Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing

Identifieur interne : 000356 ( Main/Exploration ); précédent : 000355; suivant : 000357

Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing

Auteurs : Margot Paris [France, Suisse] ; Laurence Despres [France]

Source :

RBID : ISTEX:EC4547385FF91FC9F2F115A19D29D1AA4472669E

English descriptors

Abstract

AFLP‐based genome scans are widely used to study the genetics of adaptation and to identify genomic regions potentially under selection. However, this approach usually fails to detect the actual genes or mutations targeted by selection owing to the difficulties of obtaining DNA sequences from AFLP fragments. Here, we combine classical AFLP outlier detection with 454 sequencing of AFLP fragments to obtain sequences from outlier loci. We applied this approach to the study of resistance to Bacillus thuringiensis israelensis (Bti) toxins in the dengue vector Aedes aegypti. A genome scan of Bti‐resistant and Bti‐susceptible A. aegypti laboratory strains was performed based on 432 AFLP markers. Fourteen outliers were detected using two different population genetic algorithms. Out of these, 11 were successfully sequenced. Three contained transposable elements (TEs) sequences, and the 10 outliers that could be mapped at a unique location in the reference genome were located on different supercontigs. One outlier was in the vicinity of a gene coding for an aminopeptidase potentially involved in Bti toxin‐binding. Patterns of sequence variability of this gene showed significant deviation from neutrality in the resistant strain but not in the susceptible strain, even after taking into account the known demographic history of the selected strain. This gene is a promising candidate for future functional analysis.

Url:
DOI: 10.1111/j.1365-294X.2012.05499.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing</title>
<author>
<name sortKey="Paris, Margot" sort="Paris, Margot" uniqKey="Paris M" first="Margot" last="Paris">Margot Paris</name>
</author>
<author>
<name sortKey="Despres, Laurence" sort="Despres, Laurence" uniqKey="Despres L" first="Laurence" last="Despres">Laurence Despres</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EC4547385FF91FC9F2F115A19D29D1AA4472669E</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1365-294X.2012.05499.x</idno>
<idno type="url">https://api.istex.fr/document/EC4547385FF91FC9F2F115A19D29D1AA4472669E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001157</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001157</idno>
<idno type="wicri:Area/Istex/Curation">001157</idno>
<idno type="wicri:Area/Istex/Checkpoint">000129</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000129</idno>
<idno type="wicri:doubleKey">0962-1083:2012:Paris M:identifying:insecticide:resistance</idno>
<idno type="wicri:Area/Main/Merge">000358</idno>
<idno type="wicri:Area/Main/Curation">000356</idno>
<idno type="wicri:Area/Main/Exploration">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing</title>
<author>
<name sortKey="Paris, Margot" sort="Paris, Margot" uniqKey="Paris M" first="Margot" last="Paris">Margot Paris</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d’Ecologie Alpine (LECA), UMR 5553 CNRS‐Université de Grenoble, BP53 38041 Grenoble Cedex 9</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Plant Ecological Genetics, Institute of Integrative Biology, Universitätstrasse 16, ETH CH‐8092 Zurich</wicri:regionArea>
<wicri:noRegion>ETH CH‐8092 Zurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Despres, Laurence" sort="Despres, Laurence" uniqKey="Despres L" first="Laurence" last="Despres">Laurence Despres</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d’Ecologie Alpine (LECA), UMR 5553 CNRS‐Université de Grenoble, BP53 38041 Grenoble Cedex 9</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Ecology</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-04">2012-04</date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1672">1672</biblScope>
<biblScope unit="page" to="1686">1686</biblScope>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
<idno type="istex">EC4547385FF91FC9F2F115A19D29D1AA4472669E</idno>
<idno type="DOI">10.1111/j.1365-294X.2012.05499.x</idno>
<idno type="ArticleID">MEC5499</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus thuringiensis var. israelensis</term>
<term>amplified fragment length polymorphism</term>
<term>genome scan</term>
<term>insecticidal toxins</term>
<term>insecticide resistance</term>
<term>mosquito</term>
<term>pathogen vector</term>
<term>pyrosequencing</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">AFLP‐based genome scans are widely used to study the genetics of adaptation and to identify genomic regions potentially under selection. However, this approach usually fails to detect the actual genes or mutations targeted by selection owing to the difficulties of obtaining DNA sequences from AFLP fragments. Here, we combine classical AFLP outlier detection with 454 sequencing of AFLP fragments to obtain sequences from outlier loci. We applied this approach to the study of resistance to Bacillus thuringiensis israelensis (Bti) toxins in the dengue vector Aedes aegypti. A genome scan of Bti‐resistant and Bti‐susceptible A. aegypti laboratory strains was performed based on 432 AFLP markers. Fourteen outliers were detected using two different population genetic algorithms. Out of these, 11 were successfully sequenced. Three contained transposable elements (TEs) sequences, and the 10 outliers that could be mapped at a unique location in the reference genome were located on different supercontigs. One outlier was in the vicinity of a gene coding for an aminopeptidase potentially involved in Bti toxin‐binding. Patterns of sequence variability of this gene showed significant deviation from neutrality in the resistant strain but not in the susceptible strain, even after taking into account the known demographic history of the selected strain. This gene is a promising candidate for future functional analysis.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Suisse</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Paris, Margot" sort="Paris, Margot" uniqKey="Paris M" first="Margot" last="Paris">Margot Paris</name>
</region>
<name sortKey="Despres, Laurence" sort="Despres, Laurence" uniqKey="Despres L" first="Laurence" last="Despres">Laurence Despres</name>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Paris, Margot" sort="Paris, Margot" uniqKey="Paris M" first="Margot" last="Paris">Margot Paris</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000356 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000356 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:EC4547385FF91FC9F2F115A19D29D1AA4472669E
   |texte=   Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024